
Data Structures Data Structures
and Algorithmsand Algorithms
Data Structures
and Algorithms

MCS-208

Chapter Wise Reference Book
Including Many Solved Sample Papers

Based on

I.G.N.O.U.
& Various Central, State & Other Open Universities

NEERAJ®

MRP ` 280/-

(Publishers of Educational Books)

NEERAJ
PUBLICATIONS

Mob.: 8510009872, 8510009878 E-mail: info@neerajbooks.com

Website: www.neerajbooks.com

By: Anand Prakash Srivastava

TEXT - 136 + STARTING PAGES - 4 + QUESTION PAPERS = 8 = Total 148 = 18.5 FARMA

Content

Question Paper—June-2024 (Solved)...1-3

Question Paper—December-2023 (Solved)..1-3

Question Paper—June-2023 (Solved)...1-2

	S.No.	 Chapterwise Reference Book	 Page

DATA STRUCTURES AND ALGORITHMS

BLOCK-1: INTRODUCTION TO ALGORITHMS AND DATA STRUCTURES

	 1. 	 Analysis of Algorithms...1

	 2. 	 Arrays..10

	 3. 	 Lists...18

BLOCK-2: STACKS, QUEUES AND TREES

	 4. 	 Stacks...30

	 5. 	 Queues..40

	 6. 	 Trees...53

BLOCK-3: GRAPH ALGORITHMS AND SEARCHING TECHNIQUES

	 7. 	 Advanced Trees..66

	 8. 	 Graphs..85

	 9. 	 Searching and Sorting Techniques... 100

BLOCK-4 FILE STRUCTURES AND ADVANCED DATA STRUCTURES

	 10. 	 Hashing...110

	 11. 	 Advanced Data Structures..118

	 12. 	 File Structures.. 128

nn

	S.No.	 Chapterwise Reference Book	 Page

Sample Preview

of the

Solved

Sample Question

Papers

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

Q. 1. (a) Write an algorithm for implementation
of a Stack using Arrays.

Ans. Implementation of Stack Using Arrays:
You’re correct that while both arrays and stacks store
ordered elements, there are important differences
between them. A stack is a data structure that follows
the LIFO (Last In, First Out) principle, where elements
are added or removed from the top of the stack. On
the other hand, an array is a fixed-size collection of
elements, and its size must be declared at the time of
initialization.

When using an array to implement a stack, one
would typically define an array with a maximum
size (to prevent overflow), and a variable to track the
current top of the stack.

#include <stdio.h>
int choice, stack[10], top = 0, element;
void push();
void pop();
void showelements();
int main() {
 while (1) {
 printf(“\nEnter one of the following

options:\n”);
 printf(“1. PUSH\n2. POP\n3. SHOW

ELEMENTS\n4. EXIT\n”);
 scanf(“%d”, &choice);
 switch (choice) {
 case 1:
 push();
 break;
 case 2:
 pop();
 break;
 case 3:
 showelements();
 break;

June – 2024
QUESTION PAPER

(Solved)

DATA STRUCTURES AND ALGORITHMSDATA STRUCTURES AND ALGORITHMS
Time: 3 Hours]	 	 [Maximum Marks : 100

Weightage : 70%

Note: Question No. 1 is compulsory. Attempt any three questions from the rest. All algorithms should be written
nearer to ‘C’ language.

MCS-208

 case 4:
 printf(“Exiting program.\n”);
 return 0;
 default:
 printf(“Invalid choice. Please enter

1–4.\n”);
 }
 }
}
void push() {
 if (top < 10) {
 printf(“Enter the element to be pushed to

stack:\n”);
 scanf(“%d”, &element);
 stack[top] = element;
 top++;
 } else {
 printf(“Stack is full.\n”);
 }
}
void pop() {
 if (top > 0) {
 top--;
 element = stack[top];
 printf(“Popped element: %d\n”, element);
 } else {
 printf(“Stack is empty.\n”);
 }
}
void showelements() {
 if (top == 0) {
 printf(“Stack is empty.\n”);
 } else {
 printf(“Stack elements:\n”);
 for (int i = 0; i < top; i++) {
 printf(“%d\n”, stack[i]);
 }
 }
}

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

2 / NEERAJ : DATA STRUCTURES AND ALGORITHMS (JUNE-2024)

A stack of size 10 is used to store integers with
four operations: push, pop, showelements, and exit.
push adds an element, pop removes the top element,
showelements displays all elements, and exit ends the
program. The top variable tracks the next free position,
element holds the value to be pushed or popped, and
choice lets the user select an operation.

(b) Write an algorithm for multiplication of
two matrices.

Ans. Matrix Multiplication Algorithm
(Pseudocode)

Let matrix A be of size m × n and matrix B be of
size n × p. The result matrix C will be of size m × p.

For each row i in matrix A:
 For each column j in matrix B:
 Initialize C[i][j] = 0
 For each element k from 0 to n-1:
 C[i][j] += A[i][k] * B[k][j]
C Program for Matrix Multiplication
#include <stdio.h>

int main() {
 int A[10][10], B[10][10], C[10][10];
 int m, n, p, q, i, j, k;

 // Input size of matrices
 printf(“Enter rows and columns of matrix A (m

n): “);
 scanf(“%d %d”, &m, &n);

 printf(“Enter rows and columns of matrix B (p
q): “);

 scanf(“%d %d”, &p, &q);

 if (n != p) {
 printf(“Matrix multiplication not possible.

Columns of A must equal rows of B.\n”);
 return 0;
 }

 // Input elements of matrix A
 printf(“Enter elements of matrix A:\n”);
 for (i = 0; i < m; i++)
 for (j = 0; j < n; j++)
 scanf(“%d”, &A[i][j]);

 // Input elements of matrix B
 printf(“Enter elements of matrix B:\n”);
 for (i = 0; i < p; i++)

 for (j = 0; j < q; j++)
 scanf(“%d”, &B[i][j]);

 // Multiply matrices
 for (i = 0; i < m; i++) {
 for (j = 0; j < q; j++) {
 C[i][j] = 0;
 for (k = 0; k < n; k++)
 C[i][j] += A[i][k] * B[k][j];
 }
 }

 // Output result
 printf(“Resultant Matrix C:\n”);
 for (i = 0; i < m; i++) {
 for (j = 0; j < q; j++)
 printf(“%d “, C[i][j]);
 printf(“\n”);
 }

 return 0;
}
(c) Write an association for implementation of

Quick Sort.
Ans. Ref.: See Chapter-9, Page No. 102, ‘Quick

Sort’.
(d) Convert the following expression to postfix:

a + b*c + d/e*f
Ans. Given Infix Expression:
a + b * c – d/e * f
Step-by-Step Conversion:
Start with b * c → postfix: b c *
Then a + (b * c) → postfix: a b c * +
Next, d/e → postfix: d e /
Then (d/e) * f → postfix: d e / f *
Finally, the full expression is: (a + (b * c)) – ((d

/ e) * f)
Final Postfix Expression:
a b c * + d e / f * –
Q. 2. (a) Explain the process of implementing

two queues in an array.
Ans. Ref.: See Chapter-2, Page No. 15, Q. No. 5.
(b) Explain the process of calculation of storage

complexity with an example.
Ans. Ref.: See Chapter-1, Page No. 3, ‘Calculation

of Storage Complexity’.
Q. 3. (a) What are circular linked lists? Write

an algorithm for insertion of an element into a
circular linked list.

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com

Analysis of Algorithms

INTRODUCTION
Many people believe that computers can do

anything, but this is a misconception. In reality, a
computer can only execute a limited set of predefined
instructions. These instructions, when organized in a
specific sequence, are known as an algorithm. When
an algorithm is written in a programming language, it
becomes a program.

The study of algorithms and how efficiently they
perform is a key area of computer science. Even with
the development of high-speed computers, designing
time-efficient algorithms remains crucial. This is where
complexity theory comes in – it explores the resources
required to solve problems, primarily focusing on time
(the number of steps) and space (amount of memory
used).

It’s important to distinguish complexity theory
from computability theory. While computability
theory examines whether a problem can be solved by
any algorithm at all, complexity theory is concerned
with how efficiently that solution can be achieved.

The field known as Analysis of Algorithms seeks
to understand algorithmic complexity. Although much
of the research emphasizes worst-case scenarios,
there is also significant attention paid to average-
case analysis. Over time, the focus in computing has
shifted – from hardware to programming, and now
to algorithm design itself, which lies at the core of
effective problem solving.

CHAPTER AT A GLANCE

MATHEMATICAL BACKGROUND
Analyzing an algorithm involves measuring the

resources it uses, such as time and memory, to execute.
Since algorithms often handle inputs of varying
lengths, analysis helps estimate their efficiency. This

process is a key part of computational complexity
theory, which guides the search for more efficient
solutions by offering theoretical resource bounds.

Definition of Algorithm: An algorithm is a
sequence of definite and effective steps that takes
input, produces output, and always terminates. Its
key characteristics are: Input, Output, Definiteness,
Effectiveness, and Termination.

Complexity classes: Complexity classes group
decision problems by their computational difficulty.

1. Class P includes problems solvable by a
deterministic machine in polynomial time – efficient
in the worst case.

2. Class NP includes problems solvable by a non-
deterministic machine in polynomial time, such as
SAT, Hamiltonian Path, and Vertex Cover.

What is Complexity?: Complexity measures how
time or storage grows with problem size. To avoid
machine-dependent factors, we use asymptotic analysis,
which describes growth in terms of proportionality to
known functions. This focuses on the complexity of
algorithms, not the problems themselves.

Asymptotic Analysis: Asymptotic analysis
describes algorithm complexity in terms of growth
relative to input size, using notations like ‘Big O’,
‘Omega’, and ‘Theta’. These express upper, lower,
and tight bounds on performance. While ‘Little o’ is
conceptually similar to ‘Big O’, it is rarely used in
practice.

Tradeoff between space and time complexity:
Sometimes, we trade space for time by choosing
data structures that use more memory to speed up
computation. To make such choices wisely, we rely on
complexity analysis.

Instead of counting exact steps or time, we use
asymptotic analysis to estimate algorithm performance

1

DATA STRUCTURES AND ALGORITHMS

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

2 / NEERAJ : DATA STRUCTURES AND ALGORITHMS

for large inputs. This is done using Big O, Omega (Ω),
and Theta (Θ) notations, with Big O being the most
common. These notations help us understand how
an algorithm’s time or space grows with input size,
independent of machine or runtime variations.

The Θ-Notation (Tight Bound): The Theta (Θ)
notation provides a tight bound on a function, meaning
it grows at the same rate as another function, within
constant factors. We write f(n) = Θ(g(n)) if there are
constants n0, c1, and c2 such that for all n ≥ n0, c1g(n)
≤ f(n) ≤ c2g(n). This means g(n) is an asymptotically
tight bound for f(n).

The big O notation (Upper Bound): Big O
notation gives an upper bound on a function’s growth.
We write f(n) = O(g(n)) if there are constants n₀ and c
such that for all n ≥ n₀, f(n) ≤ c·g(n). This means f(n)
grows no faster than g(n), up to a constant factor, for
large n.

Mathematically, for a given function g(n), the set
O(g(n)) includes all functions f(n) such that:

O(g(n)) = {f(n) : there exist constants c > 0 and n0
such that 0 ≤ f(n) ≤ c·g(n) for all n ≥ n₀}.

This defines an upper bound on f(n) using g(n)
scaled by a constant.

While Big O gives an upper limit, Theta (Θ) is
tighter because it bounds a function from both above
and below. For example:

f(n) = an + c is O(n) (tight bound) and also O(n²)
(loose bound), but O(n) better reflects its true growth
rate.

The Ω-Notation (Lower Bound): Omega (Ω)
notation provides a lower bound on a function’s
growth. We write f(n) = Ω(g(n)) if there are constants
c > 0 and n0 such that for all n ≥ n₀, f(n) ≥ c·g(n).

Mathematically: Ω(g(n)) = {f(n) : there exist
constants c > 0 and n0 ≥ 0 such that 0 ≤ c·g(n) ≤ f(n)
for all n ≥ n0} Ω-notation is often used to represent the
best-case performance of an algorithm.

Asymptotic notation: Here are examples
illustrating the use of asymptotic notation:

Example 1: f(n) = 3n³ + 2n² + 4n + 3
4n + 3 is O(n)
So, f(n) = 3n³ + 2n² + O(n)
2n² + O(n) is O(n²)
Hence, f(n) = 3n³ + O(n²)
Therefore, f(n) = O(n³)
Here are some key rules of Big-O notation to

remember:
1. For any function f(n), f(n) = O(f(n)).

2. Any polynomial of degree k can be written as
O(nk). Example: aknk + ... + a0 = O(nk) (lower-order
terms are ignored).

3. Logarithmic bases are ignored in Big–O: logₐn
= O(logbn). We typically write it as O(log n).

4. Logarithmic functions grow slower than any
positive polynomial: logbn = O(nc) for any c > 0.

5. Polynomial functions grow slower than
exponential functions: nk = O(bn).

6. Exponential functions grow slower than
factorial functions: an = O(n!) for any constant a.
PROCESS OF ANALYSIS

The goal is to determine an algorithm’s efficiency,
based on the resources it uses, such as: CPU utilization
(Time complexity), Memory utilization (Space
complexity), Disk usage (I/O) and Network usage
(Bandwidth).

Performance: Refers to actual resource usage
when a program runs. It depends on the algorithm,
machine, compiler, etc.

Complexity: Describes how resource needs grow
with input size. For example, summing 1000 numbers
takes more time/memory than summing 2.

Time Complexity: The maximum time a Turing
machine takes to process any input of length n.

Space Complexity: The amount of memory
required, typically expressed using Big-O.
For instance, O(n²) means doubling input size
multiplies memory use by four.
Determination of Time Complexity

The RAM Model: Developed by John von
Neumann, the RAM model is used to study algorithms
independently of machine or language.
Key Assumptions:
	 1.	Each simple operation (+, –, =, if, call) takes

1 step.
	 2.	Memory access takes 1 step.
	 3.	Loops and subroutines depend on data size.

Time Complexity (using Big-O):
O(1): Constant time, independent of input size.
O(n): Linear time, grows proportionally with

input size.
O(n²): Quadratic time, grows with the square of

input size.
Example 1: Simple Sequence of Statements
If a program has k simple statements:
Statement 1;
Statement 2;
...
Statement k;

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

ANALYSIS OF ALGORITHMS / 3

Each takes constant time if it involves basic
operations.

Total time = O(1 + 1 + ... + 1) = O(k) = O(1) (since
k is a fixed constant).

Exact analysis of insertion sort:
1. for j = 2 to length[A]

→ c1, executed (n − 1) + 1 times
2. key = A[j]	→ c2, executed (n − 1) times
3. i = j − 1	 → c3, executed (n − 1) times
4. while (i > 0) and (A[i] > key)

→ c4, executed ∑(Tj) times
5. A[i + 1] = A[i]   → c4, executed ∑(Tj – 1) times
6. i = i − 1	 → c5, executed ∑(Tj – 1) times
7. A[i + 1] = key 	 → c6, executed (n − 1) times
Where:
1.	Tj is the number of times the while-loop runs

for each value of j (from 2 to n).
2.	n is the length of the array A.
The total time T(n) is the sum of times for each

line multiplied by its cost factor:
 T(n) = c1 n + c2 (n – 1) + c3 (n – 1) + c4

∑j=2
n Tj + c5 ∑j=2

n (Tj – 1) + c6 ∑j=2
n (Tj – 1) + c7 (n – 1)

Worst Case
zz Worst case is an upper bound, ensuring the

algorithm won’t exceed this time.
zz Occurs when input is reverse sorted.
zz In this case, A[i] > key is always true, so:

Best Case
zz Occurs when input is already sorted.
zz A[i] <= key at line 4, so the inner loop doesn’t

run.
Then,
T(n) = c1 n + c2 (n – 1) + c3 (n – 1) + c4 (n – 1) =

O(n)
Average Case: Average over all input cases of

size n. Still results in O(n²) complexity.
T (n) best < T(n) Avg. < T(n) worst

CALCULATION OF STORAGE
COMPLEXITY

As memory becomes cheaper, runtime complexity
gains more attention, but space complexity remains
crucial. If a program exceeds memory limits, it can’t
run at all, making space usage more critical than

runtime in some cases. Fortunately, memory is often
reused during execution.

Iterative Programs: Space complexity is easier
to analyze – based on variable declarations and data
structures (e.g., arrays).

Recursive Programs: Space complexity is more
complex. Active recursive calls stack up, using space
for: Local variables, Arguments, Return addresses.

For n recursive calls, space complexity is typically
O(n).

Example: Binary Recursion
1. If n == 0 or 1 → return 1
2. Recur for f(n − 1)
3. Recur for f(n−2)
4. Return sum of step 2 and 3
This binary recursion creates two calls per step,

leading to O(2n) time and O(n) space complexity due
to the call stack.
CALCULATION OF TIME COMPLEXITY

Example 1: Simple Code
x = 4y + 3
z = z + 1
p = 1
All variables are scalar, and each line

takes constant time regardless of values.
So, runtime = O(1) for each line.

Example 2: Binary Search
In a sorted list, binary search halves the search

space in each step:
N, N/2, N/4, ..., 1
This continues until the interval size is 1.
Taking log base 2 of each step gives:
log2N, log2N − 1, ..., 0
Total iterations = log2N + 1, hence time complexity

= O(log N).
The Complexity Ladder:
1.	O(1) – Constant Time: Time doesn’t grow

with input size. Example: Array access A[i]
2.	O(log n) – Logarithmic Time: Grows slowly

with input. Example: Binary Search
3.	O(n) – Linear Time: Grows directly with

input size. Example: Looping over an array
4.	O(n log n) – Linearithmic Time: Grows faster

than linear but less than quadratic. Example:
Merge Sort

5.	O(nk) – Polynomial Time: Grows with the k-th
power of n. Example: Selection Sort (O(n²))

6.	O(2n)–Exponential Time: Grows ex-
tremely fast; impractical for large inputs.
Example: Some recursive algorithms

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

4 / NEERAJ : DATA STRUCTURES AND ALGORITHMS

CHECK YOUR PROGRESS

Q. 1. The function 9n + 12 and 1000n + 400000
are both O(n).	 (True/False)

Ans. True.
Q. 2. If a function f(n) = O(g(n)) and h(n)

= O(g(n)), then f(n) + h(n) = O(g(n)).	 (True/False)
Ans. True.
Q. 3. If f(n) = n2 + 3n and g(n) = 6000n + 34000

then O(f(n)) < O (g(n).)	 (True/False)
Ans. False.
Q. 4. The asymptotic complexity of algorithms

depends on hardware and other factors.
Ans. False.
Q. 5. Give simplified big-O notation for the

following growth functions:
	 1.	30n2

	 2.	10n3 + 6n2
	 3.	5nlog n + 30n
	 4.	 log n + 3n
	 5.	 log n + 32

Ans. 1. 30n²
Dominant term: n²
Constants are ignored in Big-O.
Big-O: O(n²)
2. 10n³ + 6n²
Dominant term: n³ (because it grows faster than

n²)
Drop lower-order terms and constants.
Big-O: O(n³)
3. 5n log n + 30n
Dominant term: n log n (grows faster than n)
Drop lower-order terms and constants.
Big-O: O(n log n)
4. log n + 3n
Dominant term: n (grows faster than log n)
Drop lower-order term.
Big-O: O(n)
5. log n + 32
Dominant term: log n (since 32 is a constant)
Big–O: O(log n)

Table
Function Big-O
30n² O(n²)
10n³ + 6n² O(n³)
5n log n + 30n O(n log n)
log n + 3n O(n)
log n + 32 O(log n)

Q. 6. The set of algorithms whose order is O (1)
would run in the same time. 	 True/False

Ans. True.
Q. 7. Find the complexity of the following

program in big O notation:
printMultiplicationTable(int max){
for(int i = 1 ; i <= max ; i + +)
{
for(int j = 1 ; j <= max ; j + +)
cout << (i * j) << “ “ ;
cout << endl ;
} //for
Ans. printMultiplicationTable(int max) {
 for (int i = 1; i <= max; i++) { // Outer loop
 for (int j = 1; j <= max; j++) { // Inner loop
 cout << (i * j) << “ “; // Constant-

time operation
 }
 cout << endl; // Constant-time

operation
 }
}
Understanding the Loops:
1. Outer Loop:
zz Runs from i = 1 to i <= max.
zz This means it runs max times in total.

2. Inner Loop (nested inside outer loop):
zz For each value of i, j runs from 1 to max.
zz So it also runs max times for every iteration of

the outer loop.
3. Total Iterations: Since the inner loop runs

max times inside the outer loop which itself runs max
times, the total number of operations becomes:

4. Work Done Inside the Loops: cout << (i *
j) << “ “ is a simple arithmetic and output operation,
which we consider to take constant time: O(1).

Total Time Complexity: O(max × max × 1)
= (O(max2))

This is called quadratic time complexity, meaning
the program’s runtime grows proportional to the square
of the input size (max).

Q. 8. Consider the following program segment:
for (i = 1; i <= n; i *= 2)
 {
 j = 1;
 }
What is the running time of the above program

segment in big O notation?

www.neerajbooks.com

www.neerajbooks.com

NEERAJ
PUBLICATIONS
www.neerajbooks.com

	Sample Chapter Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng

	BPAS-186-EM-STARTING AND CONTENT.pdf
	Starting Page 2022 Final
	Content Final eng

	BPAS-186-EM-PAPERS.pdf
	June-2023
	December-2022
	June-2022
	Sample Paper 1

	Sample Question Paper Preview.pdf
	Content
	BPSE-144-CBCS-EM-Starting Page
	Content

	preview - sample papers
	1. Sample Question Paper

	Question Paper
	July-22
	Sample Paper-1

	preview - chapters
	2. Chapter

	Book
	Chapter-1

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	JULY-2022
	Question Paper-1
	Question Paper-2

	content.pdf
	BPSE-144-CBCS-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPSC-132-EM-Starting Page
	content

	book for preview.pdf
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17

	Question Paper.pdf
	JUNE-2023
	DEC-2022
	MAR-2022
	FEB-2021
	Question Paper 1

	content.pdf
	BPAC-132-HM-Starting Page
	content

	1.pdf
	Chapter-1
	Chapter-2
	Chapter-3
	Chapter-4
	Chapter-5
	Chapter-6
	Chapter-7
	Chapter-8
	Chapter-9
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	Chapter-16

	MPCE-31-EM Question Paper.pdf
	MPCE-31-June-2023
	MPCE-31-December-2022
	JULY-2022
	MPCE-31-March-2022

	MPCE-31-EM Content.pdf
	Starting Page MPCE-31-EM
	Content Final eng

	MCS-208-EM-BOOK.pdf
	Starting Page MCS-207
	Page 1
	Page 2

	Content Final eng
	Paper MCS-208-June-2024
	Paper MCS-208-December-2023
	Paper MCS-208-June-2023
	MCS-208-EM-CH-1
	MCS-208-EM-CH-2
	MCS-208-EM-CH-3
	MCS-208-EM-CH-4
	MCS-208-EM-CH-5
	MCS-208-EM-CH-6
	MCS-208-EM-CH-7
	MCS-208-EM-CH-8
	MCS-208-EM-CH-9
	MCS-208-EM-CH-10
	MCS-208-EM-CH-11
	MCS-208-EM-CH-12

	MCS-208-EM-PAPER.pdf
	Starting Page MCS-207
	Page 1
	Page 2

	Content Final eng
	Paper MCS-208-June-2024
	Paper MCS-208-December-2023
	Paper MCS-208-June-2023
	MCS-208-EM-CH-1
	MCS-208-EM-CH-2
	MCS-208-EM-CH-3
	MCS-208-EM-CH-4
	MCS-208-EM-CH-5
	MCS-208-EM-CH-6
	MCS-208-EM-CH-7
	MCS-208-EM-CH-8
	MCS-208-EM-CH-9
	MCS-208-EM-CH-10
	MCS-208-EM-CH-11
	MCS-208-EM-CH-12

	MCS-208-EM-CONTENTS.pdf
	Starting Page MCS-207
	Page 1
	Page 2

	Content Final eng
	Paper MCS-208-June-2024
	Paper MCS-208-December-2023
	Paper MCS-208-June-2023
	MCS-208-EM-CH-1
	MCS-208-EM-CH-2
	MCS-208-EM-CH-3
	MCS-208-EM-CH-4
	MCS-208-EM-CH-5
	MCS-208-EM-CH-6
	MCS-208-EM-CH-7
	MCS-208-EM-CH-8
	MCS-208-EM-CH-9
	MCS-208-EM-CH-10
	MCS-208-EM-CH-11
	MCS-208-EM-CH-12

