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Q. 1. (a) Write an algorithm for implementation 
of a Stack using Arrays. 

Ans. Implementation of Stack Using Arrays: 
You’re correct that while both arrays and stacks store 
ordered elements, there are important differences 
between them. A stack is a data structure that follows 
the LIFO (Last In, First Out) principle, where elements 
are added or removed from the top of the stack. On 
the other hand, an array is a fixed-size collection of 
elements, and its size must be declared at the time of 
initialization.

When using an array to implement a stack, one 
would typically define an array with a maximum 
size (to prevent overflow), and a variable to track the 
current top of the stack.

#include <stdio.h>
int choice, stack[10], top = 0, element;
void push();
void pop();
void showelements();
int main() {
    while (1) {
        printf(“\nEnter one of the following 

options:\n”);
        printf(“1. PUSH\n2. POP\n3. SHOW 

ELEMENTS\n4. EXIT\n”);
        scanf(“%d”, &choice);
        switch (choice) {
            case 1:
                push();
                break;
            case 2:
                pop();
                break;
            case 3:
                showelements();
                break;
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            case 4:
                printf(“Exiting program.\n”);
                return 0;
            default:
                printf(“Invalid choice. Please enter 

1–4.\n”);
        }
    }
}
void push() {
    if (top < 10) {
        printf(“Enter the element to be pushed to 

stack:\n”);
        scanf(“%d”, &element);
        stack[top] = element;
        top++;
    } else {
        printf(“Stack is full.\n”);
    }
}
void pop() {
    if (top > 0) {
        top--;
        element = stack[top];
        printf(“Popped element: %d\n”, element);
    } else {
        printf(“Stack is empty.\n”);
    }
}
void showelements() {
    if (top == 0) {
        printf(“Stack is empty.\n”);
    } else {
        printf(“Stack elements:\n”);
        for (int i = 0; i < top; i++) {
            printf(“%d\n”, stack[i]);
        }
    }
}
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A stack of size 10 is used to store integers with 
four operations: push, pop, showelements, and exit. 
push adds an element, pop removes the top element, 
showelements displays all elements, and exit ends the 
program. The top variable tracks the next free position, 
element holds the value to be pushed or popped, and 
choice lets the user select an operation.

(b) Write an algorithm for multiplication of 
two matrices.

Ans. Matrix Multiplication Algorithm 
(Pseudocode)

Let matrix A be of size m × n and matrix B be of 
size n × p. The result matrix C will be of size m × p.

For each row i in matrix A:
    For each column j in matrix B:
        Initialize C[i][j] = 0
        For each element k from 0 to n-1:
            C[i][j] += A[i][k] * B[k][j]
C Program for Matrix Multiplication
#include <stdio.h>

int main() {
    int A[10][10], B[10][10], C[10][10];
    int m, n, p, q, i, j, k;

    // Input size of matrices
    printf(“Enter rows and columns of matrix A (m 

n): “);
    scanf(“%d %d”, &m, &n);

    printf(“Enter rows and columns of matrix B (p 
q): “);

    scanf(“%d %d”, &p, &q);

    if (n != p) {
        printf(“Matrix multiplication not possible. 

Columns of A must equal rows of B.\n”);
        return 0;
    }

    // Input elements of matrix A
    printf(“Enter elements of matrix A:\n”);
    for (i = 0; i < m; i++)
        for (j = 0; j < n; j++)
            scanf(“%d”, &A[i][j]);

    // Input elements of matrix B
    printf(“Enter elements of matrix B:\n”);
    for (i = 0; i < p; i++)

        for (j = 0; j < q; j++)
            scanf(“%d”, &B[i][j]);

    // Multiply matrices
    for (i = 0; i < m; i++) {
        for (j = 0; j < q; j++) {
            C[i][j] = 0;
            for (k = 0; k < n; k++)
                C[i][j] += A[i][k] * B[k][j];
        }
    }

    // Output result
    printf(“Resultant Matrix C:\n”);
    for (i = 0; i < m; i++) {
        for (j = 0; j < q; j++)
            printf(“%d “, C[i][j]);
        printf(“\n”);
    }

    return 0;
}
(c) Write an association for implementation of 

Quick Sort. 
Ans. Ref.: See Chapter-9, Page No. 102, ‘Quick 

Sort’.
(d) Convert the following expression to postfix:

a + b*c + d/e*f
Ans. Given Infix Expression:
a + b * c – d/e * f
Step-by-Step Conversion:
Start with b * c → postfix: b c *
Then a + (b * c) → postfix: a b c * +
Next, d/e → postfix: d e /
Then (d/e) * f → postfix: d e / f *
Finally, the full expression is: (a + (b * c)) – ((d 

/ e) * f)
Final Postfix Expression:
a b c * + d e / f * –
Q. 2. (a) Explain the process of implementing 

two queues in an array.
Ans. Ref.: See Chapter-2, Page No. 15, Q. No. 5.
(b) Explain the process of calculation of storage 

complexity with an example.
Ans. Ref.: See Chapter-1, Page No. 3, ‘Calculation 

of Storage Complexity’.
Q. 3. (a) What are circular linked lists? Write 

an algorithm for insertion of an element into a 
circular linked list.

www.neerajbooks.com

www.neerajbooks.com

NEERAJ 
PUBLICATIONS
www.neerajbooks.com



Sample Preview

of

The Chapter

Published by:

NEERAJ

PUBLICATIONS
www.neerajbooks.com



Analysis of Algorithms

INTRODUCTION
Many people believe that computers can do 

anything, but this is a misconception. In reality, a 
computer can only execute a limited set of predefined 
instructions. These instructions, when organized in a 
specific sequence, are known as an algorithm. When 
an algorithm is written in a programming language, it 
becomes a program.

The study of algorithms and how efficiently they 
perform is a key area of computer science. Even with 
the development of high-speed computers, designing 
time-efficient algorithms remains crucial. This is where 
complexity theory comes in – it explores the resources 
required to solve problems, primarily focusing on time 
(the number of steps) and space (amount of memory 
used).

It’s important to distinguish complexity theory 
from computability theory. While computability 
theory examines whether a problem can be solved by 
any algorithm at all, complexity theory is concerned 
with how efficiently that solution can be achieved.

The field known as Analysis of Algorithms seeks 
to understand algorithmic complexity. Although much 
of the research emphasizes worst-case scenarios, 
there is also significant attention paid to average-
case analysis. Over time, the focus in computing has 
shifted – from hardware to programming, and now 
to algorithm design itself, which lies at the core of 
effective problem solving.

CHAPTER AT A GLANCE

MATHEMATICAL BACKGROUND
Analyzing an algorithm involves measuring the 

resources it uses, such as time and memory, to execute. 
Since algorithms often handle inputs of varying 
lengths, analysis helps estimate their efficiency. This 

process is a key part of computational complexity 
theory, which guides the search for more efficient 
solutions by offering theoretical resource bounds.

Definition of Algorithm: An algorithm is a 
sequence of definite and effective steps that takes 
input, produces output, and always terminates. Its 
key characteristics are: Input, Output, Definiteness, 
Effectiveness, and Termination.

Complexity classes: Complexity classes group 
decision problems by their computational difficulty.

1. Class P includes problems solvable by a 
deterministic machine in polynomial time – efficient 
in the worst case.

2. Class NP includes problems solvable by a non-
deterministic machine in polynomial time, such as 
SAT, Hamiltonian Path, and Vertex Cover.

What is Complexity?: Complexity measures how 
time or storage grows with problem size. To avoid 
machine-dependent factors, we use asymptotic analysis, 
which describes growth in terms of proportionality to 
known functions. This focuses on the complexity of 
algorithms, not the problems themselves.

Asymptotic Analysis: Asymptotic analysis 
describes algorithm complexity in terms of growth 
relative to input size, using notations like ‘Big O’, 
‘Omega’, and ‘Theta’. These express upper, lower, 
and tight bounds on performance. While ‘Little o’ is 
conceptually similar to ‘Big O’, it is rarely used in 
practice.

Tradeoff between space and time complexity: 
Sometimes, we trade space for time by choosing 
data structures that use more memory to speed up 
computation. To make such choices wisely, we rely on 
complexity analysis.

Instead of counting exact steps or time, we use 
asymptotic analysis to estimate algorithm performance 

1

DATA STRUCTURES AND ALGORITHMS

www.neerajbooks.com

www.neerajbooks.com

NEERAJ 
PUBLICATIONS
www.neerajbooks.com



2 / NEERAJ : DATA STRUCTURES AND ALGORITHMS

for large inputs. This is done using Big O, Omega (Ω), 
and Theta (Θ) notations, with Big O being the most 
common. These notations help us understand how 
an algorithm’s time or space grows with input size, 
independent of machine or runtime variations.

The Θ-Notation (Tight Bound): The Theta (Θ) 
notation provides a tight bound on a function, meaning 
it grows at the same rate as another function, within 
constant factors. We write f(n) = Θ(g(n)) if there are 
constants n0, c1, and c2 such that for all n ≥ n0, c1g(n) 
≤ f(n) ≤ c2g(n). This means g(n) is an asymptotically 
tight bound for f(n).

The big O notation (Upper Bound): Big O 
notation gives an upper bound on a function’s growth. 
We write f(n) = O(g(n)) if there are constants n₀ and c 
such that for all n ≥ n₀, f(n) ≤ c·g(n). This means f(n) 
grows no faster than g(n), up to a constant factor, for 
large n.

Mathematically, for a given function g(n), the set 
O(g(n)) includes all functions f(n) such that:

O(g(n)) = {f(n) : there exist constants c > 0 and n0 
such that 0 ≤ f(n) ≤ c·g(n) for all n ≥ n₀}.

This defines an upper bound on f(n) using g(n) 
scaled by a constant.

While Big O gives an upper limit, Theta (Θ) is 
tighter because it bounds a function from both above 
and below. For example:

f(n) = an + c is O(n) (tight bound) and also O(n²) 
(loose bound), but O(n) better reflects its true growth 
rate.

The Ω-Notation (Lower Bound): Omega (Ω) 
notation provides a lower bound on a function’s 
growth. We write f(n) = Ω(g(n)) if there are constants 
c > 0 and n0 such that for all n ≥ n₀, f(n) ≥ c·g(n).

Mathematically: Ω(g(n)) = {f(n) : there exist 
constants c > 0 and n0 ≥ 0 such that 0 ≤ c·g(n) ≤ f(n) 
for all n ≥ n0} Ω-notation is often used to represent the 
best-case performance of an algorithm.

Asymptotic notation: Here are examples 
illustrating the use of asymptotic notation:

Example 1: f(n) = 3n³ + 2n² + 4n + 3
4n + 3 is O(n)
So, f(n) = 3n³ + 2n² + O(n)
2n² + O(n) is O(n²)
Hence, f(n) = 3n³ + O(n²)
Therefore, f(n) = O(n³)
Here are some key rules of Big-O notation to 

remember:
1. For any function f(n), f(n) = O(f(n)).

2. Any polynomial of degree k can be written as 
O(nk). Example: aknk + ... + a0 = O(nk) (lower-order 
terms are ignored).

3. Logarithmic bases are ignored in Big–O: logₐn 
= O(logbn). We typically write it as O(log n).

4. Logarithmic functions grow slower than any 
positive polynomial: logbn = O(nc) for any c > 0.

5. Polynomial functions grow slower than 
exponential functions: nk = O(bn).

6. Exponential functions grow slower than 
factorial functions: an = O(n!) for any constant a.
PROCESS OF ANALYSIS

The goal is to determine an algorithm’s efficiency, 
based on the resources it uses, such as: CPU utilization 
(Time complexity), Memory utilization (Space 
complexity), Disk usage (I/O) and Network usage 
(Bandwidth).

Performance: Refers to actual resource usage 
when a program runs. It depends on the algorithm, 
machine, compiler, etc.

Complexity: Describes how resource needs grow 
with input size. For example, summing 1000 numbers 
takes more time/memory than summing 2.

Time Complexity: The maximum time a Turing 
machine takes to process any input of length n.

Space Complexity: The amount of memory 
required, typically expressed using Big-O. 
For instance, O(n²) means doubling input size 
multiplies memory use by four.
Determination of Time Complexity

The RAM Model: Developed by John von 
Neumann, the RAM model is used to study algorithms 
independently of machine or language.
Key Assumptions:
	 1.	Each simple operation (+, –, =, if, call) takes 

1 step.
	 2.	Memory access takes 1 step.
	 3.	Loops and subroutines depend on data size.

Time Complexity (using Big-O):
O(1): Constant time, independent of input size.
O(n): Linear time, grows proportionally with 

input size.
O(n²): Quadratic time, grows with the square of 

input size.
Example 1: Simple Sequence of Statements 
If a program has k simple statements:
Statement 1;  
Statement 2;  
...  
Statement k;
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Each takes constant time if it involves basic 
operations.

Total time = O(1 + 1 + ... + 1) = O(k) = O(1) (since 
k is a fixed constant).

Exact analysis of insertion sort:
1. for j = 2 to length[A]

→ c1, executed (n − 1) + 1 times
2. key = A[j]	→ c2, executed (n − 1) times
3. i = j − 1	 → c3, executed (n − 1) times
4. while (i > 0) and (A[i] > key)

→ c4, executed ∑(Tj) times
5. A[i + 1] = A[i]   → c4, executed ∑(Tj – 1) times
6. i = i − 1	 → c5, executed ∑(Tj – 1) times
7. A[i + 1] = key 	 → c6, executed (n − 1) times
Where:
1.	Tj is the number of times the while-loop runs 

for each value of j (from 2 to n).
2.	n is the length of the array A.
The total time T(n) is the sum of times for each 

line multiplied by its cost factor:
 T(n) = c1 n + c2 (n – 1) + c3 (n – 1) + c4  

∑j=2
n Tj + c5 ∑j=2

n (Tj – 1) + c6 ∑j=2
n (Tj – 1) + c7 (n – 1)

Worst Case
zz Worst case is an upper bound, ensuring the 

algorithm won’t exceed this time.
zz Occurs when input is reverse sorted.
zz In this case, A[i] > key is always true, so:

Best Case
zz Occurs when input is already sorted.
zz A[i] <= key at line 4, so the inner loop doesn’t 

run.
Then,
T(n) = c1 n + c2 (n – 1) + c3 (n – 1) + c4 (n – 1) = 

O(n)
Average Case: Average over all input cases of 

size n. Still results in O(n²) complexity.
T (n) best < T(n) Avg. < T(n) worst

CALCULATION OF STORAGE 
COMPLEXITY

As memory becomes cheaper, runtime complexity 
gains more attention, but space complexity remains 
crucial. If a program exceeds memory limits, it can’t 
run at all, making space usage more critical than 

runtime in some cases. Fortunately, memory is often 
reused during execution.

Iterative Programs: Space complexity is easier 
to analyze – based on variable declarations and data 
structures (e.g., arrays).

Recursive Programs: Space complexity is more 
complex. Active recursive calls stack up, using space 
for: Local variables, Arguments, Return addresses.

For n recursive calls, space complexity is typically 
O(n).

Example: Binary Recursion
1. If n == 0 or 1 → return 1  
2. Recur for f(n − 1)  
3. Recur for f(n−2)  
4. Return sum of step 2 and 3
This binary recursion creates two calls per step, 

leading to O(2n) time and O(n) space complexity due 
to the call stack.
CALCULATION OF TIME COMPLEXITY

Example 1: Simple Code
x = 4y + 3  
z = z + 1  
p = 1  
All variables are scalar, and each line 

takes constant time regardless of values. 
So, runtime = O(1) for each line.

Example 2: Binary Search
In a sorted list, binary search halves the search 

space in each step:
N, N/2, N/4, ..., 1
This continues until the interval size is 1.
Taking log base 2 of each step gives:
log2N, log2N − 1, ..., 0
Total iterations = log2N + 1, hence time complexity 

= O(log N).
The Complexity Ladder:
1.	O(1) – Constant Time: Time doesn’t grow 

with input size. Example: Array access A[i]
2.	O(log n) – Logarithmic Time: Grows slowly 

with input. Example: Binary Search
3.	O(n) – Linear Time: Grows directly with 

input size. Example: Looping over an array
4.	O(n log n) – Linearithmic Time: Grows faster 

than linear but less than quadratic. Example: 
Merge Sort

5.	O(nk) – Polynomial Time: Grows with the k-th 
power of n. Example: Selection Sort (O(n²))

6.	O(2n)–Exponential Time: Grows ex-
tremely fast; impractical for large inputs. 
Example: Some recursive algorithms

www.neerajbooks.com

www.neerajbooks.com

NEERAJ 
PUBLICATIONS
www.neerajbooks.com



4 / NEERAJ : DATA STRUCTURES AND ALGORITHMS

CHECK YOUR PROGRESS

Q. 1. The function 9n + 12 and 1000n + 400000 
are both O(n).	 (True/False)

Ans. True.
Q. 2. If a function f(n) = O(g(n)) and h(n)  

= O(g(n)), then f(n) + h(n) = O(g(n)).	 (True/False)
Ans. True.
Q. 3. If f(n) = n2 + 3n and g(n) = 6000n + 34000 

then O(f(n)) < O (g(n).)	 (True/False) 
Ans. False.
Q. 4. The asymptotic complexity of algorithms 

depends on hardware and other factors.
Ans. False.
Q. 5. Give simplified big-O notation for the 

following growth functions: 
	 1.	30n2

	 2.	10n3 + 6n2 
	 3.	5nlog n + 30n 
	 4.	 log n + 3n
	 5.	 log n + 32

Ans. 1. 30n²
Dominant term: n²
Constants are ignored in Big-O.
Big-O: O(n²)
2. 10n³ + 6n²
Dominant term: n³ (because it grows faster than 

n²)
Drop lower-order terms and constants.
Big-O: O(n³)
3. 5n log n + 30n
Dominant term: n log n (grows faster than n)
Drop lower-order terms and constants.
Big-O: O(n log n)
4. log n + 3n
Dominant term: n (grows faster than log n)
Drop lower-order term.
Big-O: O(n)
5. log n + 32
Dominant term: log n (since 32 is a constant)
Big–O: O(log n)

Table
Function Big-O
30n² O(n²)
10n³ + 6n² O(n³)
5n log n + 30n O(n log n)
log n + 3n O(n)
log n + 32 O(log n)

Q. 6. The set of algorithms whose order is O (1) 
would run in the same time.  	 True/False 

Ans. True.
Q. 7. Find the complexity of the following 

program in big O notation: 
printMultiplicationTable(int max){ 
for(int i = 1 ; i <= max ; i + +) 
{ 
for(int j = 1 ; j <= max ; j + +) 
cout << (i * j) << “ “ ; 
cout << endl ; 
}  //for
Ans. printMultiplicationTable(int max) { 
    for (int i = 1; i <= max; i++) {         // Outer loop
        for (int j = 1; j <= max; j++) {     // Inner loop
            cout << (i * j) << “ “;          // Constant-

time operation
        }
        cout << endl;                        // Constant-time 

operation
    }
}
Understanding the Loops:
1. Outer Loop:
zz Runs from i = 1 to i <= max.
zz This means it runs max times in total.

2. Inner Loop (nested inside outer loop):
zz For each value of i, j runs from 1 to max.
zz So it also runs max times for every iteration of 

the outer loop.
3. Total Iterations: Since the inner loop runs 

max times inside the outer loop which itself runs max 
times, the total number of operations becomes:

4. Work Done Inside the Loops: cout << (i * 
j) << “ “ is a simple arithmetic and output operation, 
which we consider to take constant time: O(1).

Total Time Complexity: O(max × max × 1)  
= (O(max2) )

This is called quadratic time complexity, meaning 
the program’s runtime grows proportional to the square 
of the input size (max).

Q. 8. Consider the following program segment: 
for (i = 1; i <= n; i *= 2) 
   { 
   j = 1; 
    } 
What is the running time of the above program 

segment in big O notation? 
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